
File: {Data (D) Dependency, • D Redundancy • D
Sharing • Development Times, Maintenance }

Relation: {Unique Names, Rows, Attrs • Atomic
Attributes • Order is Irrelevant }

Abstraction Lvls:
• {External Schemas (Views) {} Logical
(Conceptual) Schema {} Physical Schema }
• Logical & Physical Data Independence

Conceptual Database Design:
(Enhanced) ER [Generalisation/Abstraction]
• Unary/Binary/Tertiary Relationships
• ∂ Systems: ∂ Namings, ∂ Semantics • ISA:

• Overlap Constraints:
- ∆Disjoint (Max(1))
- Overlapping (default: Max(∞))

• Covering Constraints:
- Total (Min(1) []=∆–[])
- Partial (default: 0+)

UML • { ISA: Complete. Disjoint, Incomplete, Overlapping }

Relational Algebra:
• Union (U) • Intersection (∩) • Difference (–)
• Selection (σ) • Projection (π) • Cross-Product (X)
• Join (⋈) • Rename (ρ)
• π name, uosCode (σ country=’Aus’, hid=sid (Student x Hobbies))
• ρ classLis(2->cid, 4 ->uos_code) (Enrolled x UnitOfStudy)
• π address(σtitle=′Database′ ∨ title=′Data Management′(Publisher ⋈pname=publisher Book))

• Reachesi = π frm, to (Flights⋈to=frmReachesi=i) U Reachesi-1

• Division: via [»NOT EXISTS«, IN] and
 [(U), (∩),(–)] : [R(all) / S(filtered)]

INTEGRITY CONSTRAINTS:
Static ICs:
• Domain Cs: CHECK, DEFAULT, NOT NULL,

CREATE DOMAIN Grade CHAR CHECK (value in (‘A’,’B’,’C’))

• Key / Referential (/FK) Cs,
Referential Integrity: • FK } [1]
CON t_fk FK (sid) REFS Student ON [DELETE/UPDATE]
[NO ACTION/CASCADE/SET NULL/SET DEFAULT]

• Semantic ICs (Assertions, Checks)
ASSERTION: a predicate expressing a condition the db must
always satisfy. Used for ICs over several tables. Are always
checked, even if one table is empty. Are schema objects (~tables,
views), may intro big Overhead. CREATE ASSERTION name
CHECK condition.

• ALTER TABLE Person ADD CONSTRAINT LicenseChk
CHECK (licenseValidTil > CURRENT_DATE);
//+ { DROP C. / RENAME C. TO C. / MODIFY
LicenseValidTil NOT NULL }

• DEFFERENCE:
CON f FK (n) REFS n [NOT DEFERABLE] / [DEFERABLE
[INITIALLY DEFFERED / INITIALLY IMMEDIATE]]

Dynamic IC:
• A TRIGGER is a statement that is executed

automatically if specified modificiations occur. maintain
FK and Semantic C.s, commonly used with ON DEL/
UPDATE. dynamic business rules. -monitoring, keep
track of entries (e.g. sensor). simplified app design. [ON
event IF precondition THEN action]. Traditionally for
maintaining summary data (now materialized views’
job), and replicated dbs by recording ∂s (now built-in
support).

• CREATE TRIGGER name [AFTER/BEFORE] [INSRET/
DELETE/UPDATE OF attr] ON table REFERENCING
[NEW/OLD] [TABLE/ROW] AS var-name FOR EACH
[STATEMENT % / ROW, WHEN %]

• use BEFORE triggers ((row)row granuality)
for checking ICs

• use AFTER triggers ((table)statement granularity)
for integrity maintenance and update propagation

SQL:
Security (= View + GRANT/REVOKE/ROLE):
• SQL, No Authorization support at tuple level
• CREATE VIEW ageStudents AS || SELECT sid*10,

name, extract (year from sysdate) - extract (year from
birthdate) AS age
FROM Student

• INSERT INTO --View-- ageStudents(sid, name, age)
VALUES (123, 'Bill', 21)

• CREATE ROLE manager
GRANT/REVOKE select, insert ON ageStudents TO manager
GRANT manager TO mrjobs

GENERAL:
• DCL (Data Control Laanguage)

[controls db, adminstering privelages to users] »
• DDL (Data Definition Language) [CREATE,

DROP, ALTER, ICs: PK, FK REFS, NULL] »
• DML (Data Manipulation Language) [select,

insert, delete, update]
• --
• SELECT (DISTINCT) »

FROM »
WHERE [AND (% (IN (%,%)) OR %)) »
(GROUP BY ~π) »
(HAVING ~ σ) »
ORDER BY

• =,>,>=,<,<=,!=,<> [for NOTs, use Division]
• LIKE: [%]=substring, [_] = char, ||=concat
• --
• JOIN (common domain)
• EQUI-JOIN (equality, redundant columns)
• NATURAL-JOIN (x 2”” columns)
• OUTER JOIN (nulls) • L/R INNER JOIN (x nulls)
• Student LEFT OUTER JOIN Enrolled USING (sid)
• Student INNER JOIN Enrolled ON (sid=eid)
• Aggregate F()s:

avg(), first(), last() max(), min(), sum(),
count(*) //nulls, count(prereqUosCode) //+nulls

• Set Operations:
UNION, INTERSECT, EXCEPT(Oracle=MINUS)

• NULL + 3ValuedLogic:
unknown(u),True(T),False(F) • u||T=T • u||F=F •
u||u=u • T&u=u • F&u=F • u&u=u • !u=u

SUBQUERIES:
• S_ F_ W

_IN / _EXISTS / UNIQUE / NOT EXISTS (S_ F_ W_)

• IN:
 Compares value v with set of values V,
 True if ((v) in V)

• EXISTS:
 Checks if Nested is Empty (no tuples).

• --
• Correlated:

 Depends on Outer Query,
 executes Once for entire Outer

• Non-Correlated:
 Independent of Outer,
 executes once for Each Row of Outer

Extra:
• CREATE TABLE table (sid INTEGER, name CARCHAR(20),

CONSTRAINT table_PK P.K. (sid) CON table_U UNIQUE (name));

• UPDATE s_table SET status='a' WHERE id='111'
• DELETE FROM table WHERE id>'111'
• ORDER BY year DESC, semester DESC

• ---
• //Find lecturer(s) that have already taught Every second

year INFO subject [‘for all’]//
Get Staff Name, WHERE NOT EXISTS ((All
INFO2% subjects) MINUS (ALL INFO2 subjects
taught by cur_staff))

• //Find all units of study with the very same set of
pre-requisites.//

• A,B Set Comparison: A⋈B, WHERE NOT
EXISTS (A-B) AND NOT EXISTS (B-A) AND A < B

DATA NORMALIZATION
Anomolies (Evils of Redundancy; ~storage+):
(PKs also prevent insertions, deletions, and nullifying.)

• Insertion: Adding new rows forces user to create
duplicate data or to use null values.

• Deletion: Deleting rows may cause a loss of
data that would be needed for other future rows.

• Update: Changing data in a row forces changes
to other rows because of duplication.

FUNCIONAL DEPENDENCIES (FDs) (+ADV):
• X -> //(functionally) determines// Y
• Schema Normalization: The process of

validating and improving a logical design so that
it satisfies certain constraints (NFs) that avoid
redundancy.

• Normalization maintains consistency and saves
space. BUT, performance of querying can suffer
because related info is now distributed over
several Relations, requiring more JOINs (can
~compensate with indexes).

• Normalization = queries<updates, and vice-
versa.

• --
• 1NF: no multivalued, or composite, attributes
• 2NF: 1NF+no partial dependencies, every non-

key attr. fully dependent on PK
• 3NF: 2NF+no transitive dependencies,no FD

between non-keys
• BCNF: 3NF+all FDs;

X->Y, X is superkey (➝ no ‘loops’➝)
• 4NF: BCNF+all ‘non-trivial’ multivalued

dependencies are results of keys (basically
backwards ⋈). Decomposed like -» BCNFs -».

• --
• Decomposing: Splitting (R) into Normalized (S),(T)
• - Dependency Preserving: FDs on R hold in S,T.
• - Lossless Join: Common Attributes of S and T

are a key of Either S or T.
• - There is always a decomposition of any

relation into BCNF which is Lossless Join and
always a decomp. into 3NF with is lossless join
AND dependency Preserving.

• ((CK) is the minimal SK)
• Armstrong’s Axioms (Rules):

Reflexivity: If X ⊆ Y, then Y➝X
Augmentation: If X➝Y, then XZ➝YZ for any Z
Transitivity: If X➝Y and Y➝Z, then X➝Z
Union: If X➝Y and X➝Z, then X➝YZ
Decomposition: If X➝YZ, then X➝Y and X➝Z
Pseudotransitivity: If X➝Y and YS➝Z, then XS➝Z

• [1NF - 3NF] less restrictions, achievable
lossless and dependency-preserving, [BCNF+]
less redundancy, some loss, non-d-p.

DB APPLICATIONS (+ADV)
• Interactive SQL: terminal
• Non-Interactive SQL is included in an app.

program written in a host language like C, Java,
Python.

• --
• Statement-Level v.s. Call-Level Interface: SLI

uses embedded SQL (in C, SQLJ), CLI uses method
calls from a special API to communicate with the db
(JDBC, ODBC, PHP).

• Host Variables (Data Types;+Nulls): used for data
transfer between DBMS and application and map the
sql domain data types to the host language data types
(+indicators).

• Impedence Mismatch (SQL=Sets, Cursor
Concept)

• Error Handling: Important not to expose internal
db error msgs to user; potential security issues,
not user-friendly.

• Directives (DYNAMIC SQL): When SQL portion
not known at compile time, more errors, + vice
versa for Standard SQL Statements (STATIC
embedded SQL).

• --
• Design Principles:

- [Presentation Layer]
- [Business Logic]
- [Data Access Layer]
- [Data Management DBS] :
Separate Data Access Layer (xPHP), Error
Handling, Validate.

• SQL Injection PROTECTION: Validate User Input,
Use Dynamic SQL Statements with explicit, type-
checked params (not Static SQL), Restrict user
Priveleges, Error Handling.

• --
• Stored Procedures:

Programs in DB server, callable by app
(CREATE OR REPLACE F()) / CREATE PROCEDURE
name (params) AS BEGIN IF ROLLBACK ELSE END
+ves: Correctness-Protection-Insulation, Throughput
(dataTransfer)-I/O-Procedure-Only, Higher Abstraction-
know-args-only, Efficiency, Authorization, Central Code
Base for All Apps, Maintanability.
–ves: Stored Procedures still writtin in Propietary Dialects, Non-
Standard Development Ecos.

• [Multiple APIs] [Automated Data Access Layer]:
+ve Reduces code complexity, more robust software
–ve Adds overhead, less flexible; stored
procedures may have better performance.

• [Cursor Concept x?] Collection Support eg.
Language Integrated Query (LINQ):
1. create entity class,
2. create data context to load from db,
3. query

• --
Transaction Processing System Architectures:
• [Presentation Logic (GUI)]

[Processing Logic (Procedures, F()s)]
[Data Management (Storage Logic, DBMS)]
- #-tier, # = residences

• 1-Tier: Centralised System: Single Computer, +
Easy Maintenance + Central Administration –
Bad Scalability for n users

• 2-Tier: Client-Server Systems: Client: PC that
requests & uses a service, Server: system that
satisfies requests of m client systems.
[Thick/Thin Client: Data Presentation]>App.
Logic<[Server:Data Management]
+ves: Flexibility, Scalability++, Data Integrity++, Fail Safety, Stored
Procedures, ThinCents-system&vendor independence, long-term
(LT) cost < + LT maintenance <,
–ves: More Demanding on Server Performance, Thick Clients - no
central place to update, large data transfers, servers need to Trust
clients, more complex admin+maintenance (good tools needed). , ∂
in Security.

• 3-Tier: Client-Server-Middleware / Internet
App.s / Web DBs:
- [Client, Pres.]
- Split Server into 2 [App./Transaction Server]
- [Database Server]
App. Server acts as a workflow controller
(router), transaction server does bulk of data
processing.
+ves ,~2tier++s, –ves; high short term $, tools &
training, incompatible standards.

TRANSACTIONS (T)
• Transaction: a collection of 1/+ (r) & (w)

operations on 1/+ dbs’, which reflects a discrete
unit of work. Mirror ∂s in real world. To maintain
the relationship between enterprise state and db
state, Ts’ follow acid properties:

• - Atomicity (0 1)
- Consistency (ICs Satisfied after each T, defferable during)

- Isolation (Independent T Executions, serializability)
- Durabilty (T have Permanent Effects, storage)

• [API for T: BEGIN T. – COMMIT – ROLLBACK]

Concurrency Control
• (Serializabililty Tests via Precedence Graph=Late)

• Two-Pase Locking (2PL):
– Read shared(S) Lock
– Write exclusive(X) lock»(!S):

• 2PL All locks acuired before any lock is
released; may have Cascading Aborts (CA).
• (strict)s2PL: T. holds all locks until completion, no CA.

• Lock Granularity(/size):
- db > table/index > page > row > column
- [waiting-time v.s. overhead]

• Deadlock:
Cycle of transaction waiting for locks to be
released by each other;
SOLN: prevention – priorities(e.g. timestamps)
 detection – (algs / timeout).

• --
• Isolation Lvls:

Lower Levels; may be adequage for some apps; better
performance, may allow incorrect schedules.

• Anomolies in on-Serializable Schedules:
Dirty Read, Non-Repeatable Read », Lost Update

• --
• Snapshot Isolation: Instead of writing over an

old value of an object, a new version of it is
created with the new value to give a ‘snapshot’
of the new db. snapshot requires complex
maintenance due to multiversion db,
(–ve) serializability not guarantered.
(+ve) Good Performance, ‘readers never block’.

• --
• Aborting Ts; Locks only released at commit time

to avoid CA, DBMS mantains Log.

INDEXING
• access path: the algorithm and data structure

(file-scan/index) used for retrieving and storing
data in a table. it affects the efficiency with
which queries are run.

• Index: an access path to efficiently locate row(s)
via search key fields. no need search entire
table, only specific field(s). indices commonly
use either a B+tree or a hash as the data
structure to locate rows.

• --
• Main Index (I.) (/ Primary I. / Integrated I.): for a

sequentially ordered file, the index whose srchK.
specifies the sequential order of the file.

• 2ndary Index: an I. whose srchK specifies a dif.
order of table entries to seq. order of the file.
Sequential scans using Prime. I. is efficient,
notso for 2ndary.

• Clustered Index: Index entries & rows r’ sorted
on the same searchK, a 2nd CI would have to
be the same, - there can be Max(1) CI per table.
When a table is created, a C.I. is generally
created on the PK. Good for Range Searches.

• Unclustered Index: Index Entries & rows r’ Not
ordered in the same way. A 2ndary index may
be CI or UCI, generally UCI. There can be
multiple UCIs on a table.

• Type: Tree-Based Indexes:
B+-Tree, very flexible, only indices to support
point queries, range queries, & prefix searches.

• Type: Hash-Based Indexes:
are the fest & fastest for Equality Searches.

• Covering Index: An Index that contains all attrs
required to evaluate a particular SQL Query i.e.
contains all attrs from SFWGH. NOTE: the
prefix of the search key (the index) must be the
attrs from the WHERE clause. This is the
condition of the query.

• (–ves) of Indicies:
Additional I/O to access index pages. index must be
updated when table updates. Space. Indices on non-
PKs may have to be ∂d on updates.

• [CREATE INDEX name
ON table-name(<attribute-list>)]

XML
XML is a semistructured data model.
semistructured data may contain missing or
additional attrs, multiple attrs, ∂ types in ∂ objects,
herogeneous collections. XML describes content
& data whilst HTML describest style, presentation,
layout.
• Document Type Definition (DTD): XML

Grammar
<!ELEMENT book (title+, author*, price?) >
<!ATTLIST book genre CDATA #REQUIRED>
<!ELEMENT genre (#PCDATA) >

• ?(0»1), +(1»∞), *(0»∞)
• --

<a><des/>Well-Formed ,
Valid - Follows DTD

• --
• XMLns (namespace): mechanism to include

pre-defined element & attribute names
<shelf xmlns:bs=”www. b.com”>
 <bs:book>...</bs:book>
</shelf>

• XML Schema:
Separates tags &, simple, & complex types.
provides primitive data type, type construction,
inheritence, value-based constraints, FKs

• --
• DTD vs XML-Schema: DTD uses grammar,

‘part-of-relationships’, PCDATA, Specified by
XML prolog. XML Shema; Structure & typing,
~Inheritance, Data Types, Specified as attribute
of the document element (+xmlns).

• --
(Query) XPath:
• / returns root node (first element),
• .=cur_node, ..=par_node
• * any element, *@ any attribute
• // wildcard, descending n levels
• [predicate] conditions
• //Student[CrsTaken/@ucode=’INFO2120’]
• //Student[sum(.//@Grade) div cound(.//@Grade) > 3.5
SQL/XML:
• Datatype: XML
• DML: XMLPARSE (CONTENT ‘<a>...’),

SELECT A.id, XMLELEMENT (Name’Prof’, XMLATTRIBUTES
(A.deptId AS ‘Dept’), A.name) AS Info From AcademicStaff A

OLAP, Data Warehousing
On Line Transaction Processing vs
On Line Analytic Processing:
• OLTP maintains a db that is an accurate model

of real-world enterprise. Short simple Ts.
frequend updates to db, access a small fraction
of the db.

• OLAP is used to predict trend, complex queries,
infrequent updates, Ts. access large fraction of
db, historic data.

• --
• OLAP apps based on fact tables (visualizable

as Data Cube, or Star Schema (SS)).
• SS: 1 central fact table, n-dimension

tables with FKs from fact table.
• Drilling Down executes a series of queries

moving down a heirarchy, Rolling Up moves up.
• Slicing is WHERE clause in SFWG,

Pivoting is GROUP BY.
• GROUP BY CUBE (A1, A2), = 4 Queries,

- [time][time+A1][time+A2][time+A1+A2],
vice versa for GROUP BY ROLLUP until []

Data Warehouse: stores data (often derived from
OLTP) for OLAP & data mining apps. Read-Only,
Periodically Refreshed, Often Several Gbs-Tbs,
Efficiency for Complex Queries.
• ETL Process:

Capture/Extract - Data Cleansing - Transform - Load

• data should be;
detailed (not summarized)
periodic - historic (metadata mngmnt) load-r5-purge,
comprehensive,
uniform format (semantics),
quality controlled (integrity)

• Has Metadata Repository, Log. Undergoes
Incremental Updates

ADV
Hierarchical SQL Data:
• [Adjacency][List Model]
• Materialised.Path.Model
• [L]Nested Set Model[R] (Depth1stTraversal)

Recursive SQL:
WITH RECURSIVE Reaches(frm, to) AS (
 SELECT frm, to
 FROM Flights
 UNION
 SELECT F.frm, R.to
 FROM Flights F, Reaches R
 WHERE F.to=R.frm)
SELECT * FROM Reaches WHERE frm=’SYD’

CREATE RECURSIVE VIEW Reaches (frm, to) AS
SELECT frm, to FROM Flights
UNION //non-recursive(^)//recursive(v)//
SELECT F.frm, R.to
FROM Flights F, Reaches R
WHERE F.to = R.frm

Datalog:
Safe Rules:
• each variable; distinguished,

in an arithmetic / negated subgoal, & must also
appear in non-negated relational subgoal

• s(X,Y) :- arc(X,Z) AND arc(Z,Y) AND NOT Arc(X,Y)

• UNSAFE
S(X) <- R(Y)
S(X) <- R(Y) AND NOT R(X)
S(X) <- R(Y) AND X < Y
--

Extensional Database (EDB):
• par(c,p)

• flight(ua450, syd, lax, 0630, 1845).
Intensional Database (IDB):
• sib(X,Y) :- par(X,P), par(Y,P), X<>Y.
• cousin(X,Y) :- sib(X,Y).
• cousin(XlY) :- par(X,Xp), par(Y,Yp), cousin(Xp,Yp).

• reaches(X,Y) :- flights(_,X,Y,_,_).
reaches(X,Z) :- flights(_,X,Y,_,_), reaches(Y,Z).

Extra:
• uai(Sid,Year,Uai).
• advanced(S,Y,s1) :- uai (S,Y,UAI), UAI>85.
• advanced(S,Y,s2) :- advanced(S,Y,s1), (transcript

(S,_,s1,Y,d); transcript(S,_s1,Y,hd)).
• advanced(S,Y,s1) :- adanced(S,YP,s2),(transcript

(S,_,s2,YP,d); transcript(S,_s2,YP,hd)), Y is YP+1.

Indexing Heirarchies and Text
• R-Tree: a tree-structured index that remains

balanced on inserts & deletes. (cf. Skyline)
• Boolean Retrieval: +ve: Efficient Implemention

possible (eg. Inverted List/Index, maps words »
docs), –ves: result set difficult to control, no
weighting/order to terms

• Vector Space Model: Docs are represented as
vectors in term space. all doc vectors together
in Document-Term-Matrix. Vector distance =
rank. Queries represented same as docs.

(Tuple) TRC & (Domain) DRC
• TRC ~ SQL, SFW :

{ (P.name) | ... / { P | Professor(P) AND ∃T ∈Teaching
(P.Id = T.ProfId AND T.CrsCode=’INFO2820’) }

• DRC ~ Datalog : [∃=Extras] :
{ (Name,DeptId) | ∃Id ∀CrsCode (Professor
(Id,Name,DeptId) AND NOT Teaching
(Id,CrsCode,’S2002’)) }

• QBE (Query By Eg), visual DRC,
Negation:
1. ∃ var, 2. (!∃), ∀ var_in_negated_table

• EXISTS(∃) – FORALL(∀) – AND(⋀)

OR(⋁) – NOT(¬) – IN(∈)

Materialised Views (MVs)
• a MV is a virtual table that can be directly read.

Can Be: partitioned & indexed, queried directly,
DML applicable, r5 options, Best in read-
intensive ecos.

• (+ves) useful for summarizing, pre-computing,
replicating & distributing data, faster access for
expen$ive & complex joins, transparent to end-
users

• (–ves) performance, & storage, co$ts of
maintaining the views.

Skyline Queries
Given a set of objects p1...pn, the skyline
operator returns all objects pi such that pi is not
dominated by another object pj. A point p
Dominates another point q if the co-ordinate of p
on any axis is not larger than the corresponding
co-ordinate of q.
• (Top-K (or Ranked) Queries retrieve the best k

objects that minimize a specific preference f().
Limits: Require ranking f()s, and the number of
answers k from the user.)

• Block Nested Loop: Scans dataset, listing
candidate skyline pts. Compares point p with
every other point in list.
(+ve) wide applicability,
(–ve) numerous comparisons, inadequacy for
on-line processing.

• Divide-and-Conquer (D&C): Recursively,
Divide dataset into partions, until fits memory.
Compute partial skyline per partiion. Combine.

• Nearest Neighbour (NN): Finds NN closest to
origin, divides space into 2d non-disjoint
regions, recursively search for NN. Skyline
Forms. Number of unexplored regions grow
rapidly.
(+ves) Efficient for finding result,
(–ves) Redundant I/O computation, Explosive
to-do list size.

• Branch & Bound Skyline (BBS): NN Basis.
- (Uses R-Tree (like B-Trees, but used for
spatial access methods, i.e. for indexing multi-
dimensional info).)
- Assuming all points are indexed in R-Tree,
takes a Top-Down Approach via minDist (lower-
left corner » origin).
- Data Structure: Heap by minDist, List to
maintain Current Skyline (Improvable).

Computing Datalog Queries with –ve Cycles:
1. Partition (Split Dependency Graph into +vely-
strogly connected components; called strata //No
–ve arcs connecting any pair of nodes in the set //
For every pair of nodes in the set, there is a +ve
path connecting them)
2. Startify (Order the strata: if there is a path from
some note in stratum S1 to a node in another
stratum S2, then S1 must proceed S2. //Gives
Partial Orer //Any total order of the strata that is
consistent with this partial order is called
stratification)
3. Evaluate the strata in the order of the
stratification using the algorithm for computing
+ve recursive queries //replace negated relations).

